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For rotationally constrained convection, the Taylor–Proudman theorem enforces an
organization of nonlinear flows into tall columnar or compact plume structures. While
coherent structures in convection under moderate rotation are exclusively cyclonic,
recent experiments for rapid rotation have revealed a transition to equal populations
of cyclonic and anticyclonic structures. Direct numerical simulation (DNS) of this
regime is expensive, however, and existing simulations have yet to reveal anticyclonic
vortical structures. In this paper, we use a reduced system of equations for rotationally
constrained convection valid in the asymptotic limit of thin columnar structures and
rapid rotation to perform numerical simulation of Rayleigh–Bénard convection in
an infinite layer rotating uniformly about the vertical axis. Visualization indicates
the existence of cyclonic and anticyclonic vortical populations for all parameters
examined. Moreover, it is found that the flow evolves through three distinct regimes
with increasing Rayleigh number (Ra). For small, but supercritical Ra, the flow is
dominated by a cellular system of hot and cold columns spanning the fluid layer.
As Ra increases, the number density of these columns decreases, the up- and down-
drafts within them strengthen and the columns develop opposite-signed ‘sleeves’ in
all fields. The resulting columns are highly efficient at transporting heat across the
fluid layer. In the final regime, lateral mixing plays a dominant role in the interior
and the columnar structure is destroyed. However, thermal plumes are still injected
and rejected from the thermal boundary layers. We identify the latter two regimes
with the vortex-grid and geostrophic turbulence regimes, respectively. Within these
regimes, we investigate convective heat transport (measured by the Nusselt number),
mean temperature profiles, and root-mean-square profiles of the temperature, vertical
velocity and vertical vorticity anomalies. For all Prandtl numbers investigated, the
mean temperature saturates in a non-isothermal profile as Ra increases owing to
intense lateral mixing.

1. Introduction
In many objects of astrophysical and geophysical interest, thermal convection is

strongly influenced by rotation. For instance, stars like our Sun possess a deep,
turbulent, differentially rotating outer layer (Svestka & Harvey 2000). Deep outer
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convection zones are also found on the giant planets (e.g. Jupiter, Saturn and Neptune)
(Hubbard, Burrows & Lunine 2000), while convection within the Earth’s interior plays
an integral part in the geodynamo (Proctor & Gilbert 1994). Closer to home, open-
ocean deep convection (Marshall & Schott 1999) represents a phenomenon with
important contributions (such as water mass transformation) to the thermohaline
circulation, i.e. the global overturning of the ocean on a thousand-year time scale. Here,
vigorous localized downwellings are observed in high-latitude oceans, preconditioned
by large-scale seasonal cooling and instigated by intense, but intermittent, local cooling
events. In all these examples, the convective Rossby number Roconv is moderate to
low, indicating that these flows are affected by rotation, while the Reynolds number
Re (equivalently, the thermal Rayleigh number Ra) is high, implying that the flow is
turbulent. Roconv is the ratio of rotation period to buoyancy free-fall time, and is a
precise a priori measure of the importance of rotation.

Although much progress has been made in studying flows of this type, not only nu-
merically and theoretically, but also experimentally, much remains to be learned about
rotationally constrained turbulent motions (Proctor & Gilbert 1994; Marshall &
Schott 1999; Svestka & Harvey 2000; Hubbard et al. 2000). The canonical example
that retains the essence of these flows, where homogeneous forcing occurs over a large
horizontal extent, is provided by rotating Rayleigh–Bénard convection, i.e. con-
vection between two horizontal planes rotating rigidly about the vertical, with an
imposed temperature difference across them. Early theoretical work on a horizontally
unbounded layer showed that rotation delays the onset of convection (Chandrasekhar
1953, 1961), while subsequent work studied the development and saturation of
the instability in the weakly nonlinear regime (Veronis 1968; Clune & Knobloch
1993 and references therein). The most notable achievement of the theory was the
discovery of the Küppers–Lortz instability of convection rolls (Küppers & Lortz
1969), an orientation-changing instability that sets in at onset provided the rotation is
sufficiently fast. The existence of this instability is now well documented experimentally
(Zhong, Ecke & Steinberg 1991, 1993; Ning & Ecke 1993; Boubnov & Golitsyn 1995)
and theoretically (Swift 1984; Clune & Knobloch 1993). Parallel to these develop-
ments, experiments in a rotating cylinder (Nakagawa & Frenzen 1955; Rossby 1969)
revealed that for high rotation rates, convection, in fact, sets in considerably earlier
than predicted by the unbounded-layer theory, a finding explained by the subsequent
identification and description of a class of unstable modes (the so-called wall modes)
that are absent in the unbounded system (Zhong et al. 1993; Goldstein et al. 1993).
These developments are reviewed by Knobloch (1998).

Beyond the weakly nonlinear regime, the subsequent evolution of the system is
strongly influenced by the magnitude of Roconv. Experimental observations in the
regime 0.2 � Roconv � 1 (Vorobieff & Ecke 1998, 2002) and detailed direct numerical
simulation (DNS) for Roconv = 0.75 (Julien et al. 1996b) have revealed a breakdown
of the cellular roll states, favoured near onset, to a dynamical state dominated by
cyclonic vortical structures. These take the form of moving columns spanning the layer
depth or long-lived coherent plumes forming out of an unstable thermal boundary
layer. Indeed, Julien et al. (1996b) have observed strong chaotic vortical interactions
between the structures in the form of merger and annihilation events in the presence
of strong horizontal shears. Such vortical interactions are responsible for substantial
lateral mixing that sustains an unstable mean temperature gradient in the fluid
interior. An unstable mean temperature gradient that increases with rotation rate has
also been observed in experiments by Hart & Ohlsen (1999) for fixed Ra = 2 × 1011

and 0.08 � Roconv � 1.7. These observations represent significant departures from
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non-rotating Rayleigh–Bénard convection, where isothermal interiors are produced
owing to dominant vertical mixing. However, despite these marked differences, some
similarities do exist. Most prominent is the remarkable finding that similar heat
transport laws are observed (Rossby 1969). In particular, so-called hard turbulence
(Nu ∼ Ra2/7, where Nu is the Nusselt number) has been observed at sufficiently high
Ra in the presence of no-slip boundaries (Julien et al. 1996a; Liu & Ecke 1997), while
the classical transport law (Nu ∼ Ra1/3) is found only in the presence of stress-free
boundaries (Julien et al. 1996a).

For smaller Rossby numbers (Roconv � 0.2), the flow visualization experiments of
Vorobieff & Ecke (2002) identified a striking topological change in the dynamics
of the vortices. In the strongly nonlinear and turbulent regimes, plume generation
in the thermal boundary layer now results in a new population of anticyclonic
plumes, in addition to the cyclonic population. These appear via the formation
of vortical thermal columns of cylindrical form, with either hot or cold thermal
anomalies. Further, Vorobieff & Ecke (2002) show that the distribution of cyclonic
and anticyclonic coherent structures approaches a balance as Roconv → 0. It is likely
that these columns are in geostrophic balance (Boubnov & Golitsyn 1986, 1995; Sakai
1997), although no experimental velocity measurements have confirmed this. Despite
this, we refer to these in the following as ‘Taylor’ columns and the corresponding
regime as the geostrophic vortex regime, since it bears some similarity to stable-
layer quasi-geostrophic dynamics (Pedlosky 1987; Salmon 1998). However, a detailed
understanding of the formation and dynamics of the Taylor columns remains open.
For instance, in the experiments of Sakai (1997) (for 0.08 � Roconv � 0.70), both
hot and cold Taylor column populations are present, and are in a state of constant
chaotic motion, while in the experiments of Boubnov & Golitsyn (1995) and Zhong
et al. (1991, 1993) only Taylor columns of one sign (cold) are realized; these are
observed to ‘solidify’ into a stationary triangular lattice. Similar vortex lattices are
found even at relatively small Reynolds (Rayleigh) numbers (Bajaj et al. 1998). At
high Reynolds (Rayleigh) numbers, however, the Taylor columns lose integrity and
give way to long-lived plumes that form out of the thermal boundary layers, but no
longer extend across the depth of the layer. We refer to this regime as geostrophic
turbulence.

The current understanding of this topological change is still incomplete. For
experiments, the challenge resides primarily in the accurate acquisition of highly
resolved velocity, temperature and vortical fields (two-dimensional slices or three-
dimensional volumes), although Vorobieff & Ecke (2002) have made substantial
progress in acquiring near-boundary velocity fields using particle image velocimetry
(PIV) techniques. For numerical simulations, the challenge resides in temporal and
spatial resolution constraints imposed by prohibitively fast inertial waves and thin
Ekman boundary layers. It is evident therefore that reduced equations in which
fast inertial waves are filtered out and thin Ekman boundary layers are absent
would be of great utility. This type of approach has been notably successful in the
quasi-geostrophic regime (Pedlosky 1987; Salmon 1998), and has led to sophisticated
balanced theories for stably stratified flows. Julien et al. (2006) established a firm
connection of these theories to the unstably stratified case of interest here.

This paper focuses on a detailed numerical investigation of the high Re (high
Ra) solutions to a set of reduced partial differential equations (PDEs) valid in the
Roconv � 1 limit, and combines the approach of Julien et al. (2006) with the initial
low Ra numerical investigation of Julien, Knobloch & Werne (1998). Major findings
include the identification of three distinct flow regimes, all present for Roconv � 1 and
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all involving vortical structures of both cyclonicities, including regimes we identify
with the observed geostrophic vortex and geostrophic turbulence regimes. However,
since the reduced equations are valid for Roconv � 1 only, the topological transition
with increasing Roconv to a vortex population of one sign is absent.

The outline of this paper is as follows. In § 2, a derivation of the reduced PDEs
is given for the upright case (i.e. rotation anti-parallel to gravity). Some basic
properties of the linear theory are then summarized, followed by a brief discussion
of recently identified exact nonlinear single-mode solutions to the reduced PDEs.
After a description of our numerical approach, a detailed discussion is given of the
results obtained at various Prandtl numbers Pr corresponding to fluids ranging from
air through water to high-viscosity fluids (i.e. 1 � Pr < ∞). However, a detailed
investigation of the statistical properties of the different regimes, including energy
spectra, is postponed to a future publication. The paper concludes with a discussion
of the implications of the results.

2. Derivation of the reduced model
We consider flow that is characterized by dimensional length, velocity, pressure and

temperature scales L, U , P̃ and T̃ , respectively, and adopt a Cartesian coordinate
system x = (x, y, z)T rotating with angular velocity Ω about the z-axis, with gravity
g = −g ẑ. With these scales, the dimensionless Boussinesq equations governing the
system are

Dt u +
1

Ro
ẑ × u = −P ∇p + Γ θ ẑ +

1

Re
∇2u, (2.1a)

Dt θ =
1

Pe
∇2θ, (2.1b)

∇ · u = 0, (2.1c)

where u = (u, v, w)T is the velocity, Dt ≡ ∂t + u · ∇, p is the pressure, θ is the tempera-

ture, Ro ≡ U/2ΩL is the Rossby number, P ≡ P̃ /ρ0U
2 is the Euler number, Pe ≡

UL/κ is the Péclet number, Re ≡ UL/ν is the Reynolds number, and Γ ≡ −gαT̃ L/U 2

is the buoyancy number. Here, Ω = |Ω |, α is the coefficient of thermal expansion, ρ0

is a reference fluid density, ν is the kinematic viscosity and κ is the thermal diffusivity.
We restrict the flow to an unbounded layer of fluid between two impenetrable rigid
horizontal lids. Physically relevant boundary conditions include stress-free and/or
no-slip mechanical boundary conditions, together with fixed temperature or fixed flux
thermal boundary conditions or combinations thereof. In addition, we assume that the
rotational Froude number FrΩ ≡ Ω2L/g � 1, so that the centrifugal buoyancy force
is negligible compared to the gravitational buoyancy force. Neglect of the centrifugal
buoyancy force Γ FrΩθ ẑ × ẑ × x in the momentum balance requires Γ FrΩ � 1, a
constraint that is assumed throughout this paper.

The above non-dimensionalization is generic in that precise velocity, length and
time scales have not, as yet, been identified. Indeed, once the problem of interest is
formulated, the system (2.1) can readily be recast into forms pertaining to various
canonical problems in fluid mechanics. For example, in (slowly) rotating Rayleigh–
Bénard convection in a plane unbounded fluid layer of depth H with temperature

difference 	T̃ imposed across it, it is customary to employ the choice L ≡ H as the
dimensional length scale, U ≡ ν/H as the dimensional velocity scale, H 2/ν as the
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dimensional time scale, and set T̃ =	T̃ . With these choices,

Ro = E, |Γ | =
Ra

Pr
, Re = 1, P e = Pr,

where E ≡ ν/2ΩH 2 is the Ekman number, Ra ≡ gα	T̃ H 3/νκ is the Rayleigh
number, and Pr ≡ ν/κ is the Prandtl number. In the rapidly rotating regime, this
choice is not optimal, however, since such rotation reduces the horizontal scale of
the flow, and it is this scale that becomes the natural scale. Consequently, we take L

to be the horizontal scale, and, until we make a specific choice, work with the more
general non-dimensionalization (2.1).

2.1. Asymptotic theory for Ro � 1 and AZ � 1

The Taylor–Proudman (Proudman 1916; Taylor 1923) constraint suggests that
rapidly rotating convection takes place in tall columnar structures. Consequently
we characterize the flow by its aspect ratio AZ := H/L, where H is the depth of
the fluid layer and L is the characteristic scale in the horizontal. For tall columnar
structures, AZ � 1. In addition to a small vertical scale z, we introduce a large scale,
Z := A−1

Z z, over which the columns are modulated. A multiple time scale expansion
is also required. We suppose, following Julien et al. (1998, 2005), that T := A−1

T t ,
AT � 1, is a slow time, and employ the substitutions

∂z → ∂z +
1

AZ

∂Z, ∂t → ∂t +
1

AT

∂T . (2.2)

These result in the rescaled equations(
Dt +

1

AT

∂T +
w

AZ

∂Z

)
u +

1

Ro
ẑ × u = −P

(
∇ +

ẑ
AZ

∂Z

)
p + Γ θ ẑ

+
1

Re

(
∇ +

ẑ
AZ

∂Z

)2

u, (2.3a)(
Dt +

1

AT

∂T +
w

AZ

∂Z

)
θ =

1

Pe

(
∇ +

ẑ
AZ

∂Z

)2

θ, (2.3b)

∇ · u +
1

AZ

∂Zw = 0. (2.3c)

We now use these equations to derive a closed set of reduced equations.
We begin by averaging equations (2.3) over fast temporal and small spatial scales,

obtaining

1

AT

∂T u +
1

AZ

∂Z (wu) +
1

Ro
ẑ × u =

(
− P

AZ

∂Zp + Γ θ

)
ẑ +

1

ReA2
Z

∂2
Zu, (2.4a)

1

AT

∂T θ +
1

AZ

∂Z(wθ ) =
1

PeA2
Z

∂2
Zθ, (2.4b)

∂Zw = 0, (2.4c)

where the overbar denotes the operation

f (Z, T ) := lim
τ,V →∞

1

τV

∫
τ,V

f (x, Z, t, T ) dx dt, (2.5)

for any dependent quantity f . To obtain these equations we used the vector identity
u · ∇γ = ∇ · (γ u) − γ ∇ · u, where γ is a scalar.
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To obtain equations for fluctuating quantities, we write the dependent variables
v = (u, p, θ)T in (2.3) as a sum of their mean and fluctuating components, i.e.

v(x, Z, t, T ) = v(Z, T ) + v′(x, Z, t, T ), (2.6)

and subtract the associated mean equations (2.4):(
Dt +

1

AT

∂T +
w

AZ

∂Z

)
u′ +

w′

AZ

∂Zu − 1

AZ

∂Z(w′u′) +
1

Ro
ẑ × u′

= −P

(
∇ +

ẑ
AZ

∂Z

)
p′ + Γ θ ′ ẑ +

1

Re

(
∇ +

ẑ
AZ

∂Z

)2

u′, (2.7a)

(
Dt +

1

AT

∂T +
w

AZ

∂Z

)
θ ′ +

w′

AZ

∂Zθ − 1

AZ

∂Z(w′θ ′) =
1

Pe

(
∇ +

ẑ
AZ

∂Z

)2

θ ′, (2.7b)

∇ · u′ +
1

AZ

∂Zw′ = 0. (2.7c)

Next, we expand the dependent variables v = (u, u′, p, p′, θ, θ ′)T in terms of the
small parameter Ro ≡ ε,

v = v0 + εv1 + ε2v2 + O(ε3), (2.8)

and, following Julien et al. (2005), choose the scalings

AZ = ε−1, AT = ε−2, Γ = ε−1Γ̃ , (2.9)

where Γ̃ , like Re and Pe, is of order one. Examination of the vertical component
of equation (2.4a) now reveals that for hydrostatic balance at leading order we must
take P = ε−2. Thus,

∂Zp0 = Γ̃ θ0. (2.10)

Moreover, the leading-order horizontal components then imply that u0⊥ ≡
(u0, v0, 0)T = 0. Since equation (2.4c) implies that w ≡ 0, it follows that u0 ≡ 0,
resulting in a substantial simplification.

At O(1), the mean buoyancy equation now gives

∂Z(w′
0θ

′
0) = 0,

implying that w′
0θ

′
0 = 0, a condition that is in general satisfied only when w′

0 ≡ 0
or θ ′

0 ≡ 0. The former is unphysical in that it requires the small-scale, rotationally
constrained flow to be hydrostatic. Therefore, in the following, we take θ ′

0 ≡ 0,
implying that buoyancy fluctuations about the mean temperature profile θ 0(Z) are
O(ε).

At O(ε) the mean and fluctuating buoyancy equations give

∂T θ 0 + ∂Z(w′
0θ

′
1) =

1

Pe
∂2

Zθ0, (2.11)

and

D0
t θ

′
1 + w′

0∂Zθ 0 =
1

Pe
∇2θ ′

1, (2.12)

respectively, where D0
t ≡ ∂t + u′

0 · ∇ and we have used the fact that θ ′
0 = 0. At O(ε−2),

the momentum equation yields

∇p′
0 = 0, (2.13)
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implying that p′
0 = 0. With θ ′

0 = p′
0 = 0, the momentum equation at O(ε−1) and O(1)

now yields

ẑ × u′
0 = −∇p′

1, (2.14)

D0
t u′

0 + ẑ × u′
1 = −∇p′

2 + (−∂Zp′
1 + Γ̃ θ ′

1) ẑ +
1

Re
∇2u′

0. (2.15)

Finally, the continuity equation at O(1) and O(ε) yields

∇ · u′
0 = 0, (2.16)

∇ · u′
1 + ∂Zw′

0 = 0. (2.17)

The system of equations (2.10)–(2.12), (2.14)–(2.17) is closed, but still quite involved.
However, owing to its special structure, it is amenable to further simplification, as
described next.

2.2. The Taylor–Proudman constraint and the dynamics of the reduced system

Equation (2.14) indicates that the leading-order flow is in geostrophic balance.
Moreover, the curl of this equation implies both that ẑ · ∇u′

0⊥ = 0 and ∇⊥ · u′
0⊥ = 0 (i.e.

the horizontal flow is non-divergent on small scales). Here, ∇⊥ ≡ (∂x, ∂y, 0)T . Since
(2.16) then implies that ∂zw

′
0 = 0, it follows that

( ẑ · ∇)u′
0 = 0. (2.18)

Likewise, applying ẑ · to (2.14) and ẑ · ∇ to (2.12), we find that

( ẑ · ∇)p′
1 = 0, ( ẑ · ∇)θ ′

1 = 0. (2.19)

These three relations express the Taylor–Proudman constraint that forces leading-
order motion on small spatial scales to be invariant in the direction of the rotation
axis. It follows that u′

0, p
′
1, θ

′
1 depend on height through the slow variable Z only. This

is not so automatic for the higher-order terms. However, if we interpret the vertical
component of equation (2.15) as an equation for p′

2, we see immediately that p′
2 will

grow secularly with the small-scale variable z, unless the remaining terms balance.
Thus, we require the solvability condition

D0
t w

′
0 + ∂Zp′

1 = Γ̃ θ ′ +
1

Re
∇2

⊥w′
0. (2.20)

The horizontal components likewise yield an equation for w′
1, and the corresponding

solvability condition is

D0
t ( ẑ · ∇ × u′

0) = ∂Zw′
0 +

1

Re
∇2

⊥( ẑ · ∇ × u′
0). (2.21)

These solvability conditions, together with equations (2.11), (2.12) and (2.16), represent
the desired reduced system of equations, and guarantee that p′

2 and w′
1 satisfy the

Taylor–Proudman constraint as well.
It is instructive at this stage to highlight the differences between geostrophy in

the classical small-aspect-ratio regime (Pedlosky 1987; Salmon 1998) and the present
large-aspect-ratio case. In both cases, geostrophy implies horizontally non-divergent
leading-order flow, ∇⊥ · u′

0⊥ =0, and consequently that ∂zw
′
0 = 0. However, in the small-

aspect-ratio regime, the strong stable stratification permits weak vertical motions
only, i.e. w′

0 = 0, while in the present large-aspect-ratio case, the unstable stratification
permits substantial vertical motions, i.e. w′

0 �= 0. These, in turn, demand weakly
divergent horizontal motions at next order, as described by equation (2.17). These
considerations do not arise in classical geostrophy.
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2.3. Streamfunction formulation

In order to satisfy the continuity conditions (2.16), (2.17) automatically, we use a
streamfunction formulation defined by

u′ = −∇ × ψ ẑ − ∇ × ∇ × φ ẑ. (2.22)

Since u′
0 is independent of the small-scale z it follows that

u′
0 = (−∂yψ0, ∂xψ0, ∇2

⊥φ0)
T , (2.23a)

u′
1 = (−∂2

xZφ0, − ∂2
yZφ0, 0)T + (−∂yψ1, ∂xψ1, ∇2

⊥φ1)
T . (2.23b)

From (2.14), it now follows that p′
1 = ψ0, and equations (2.20), (2.21), (2.12) and (2.11)

become

∂t∇2
⊥φ + J (ψ, ∇2

⊥φ) + ∂Zψ = Γ̃ θ ′ + Re−1∇4
⊥φ, (2.24a)

∂t∇2
⊥ψ + J (ψ, ∇2

⊥ψ) − ∂Z∇2
⊥φ = Re−1∇4

⊥ψ, (2.24b)

∂tθ
′ + J (ψ, θ ′) + ∇2

⊥φ∂Zθ = Pe−1∇2
⊥θ ′, (2.24c)

∂T θ + ∂Z(θ ′∇2
⊥φ) = Pe−1∂2

Zθ, (2.24d)

where J (f, g) := ∂xf ∂yg − ∂xg∂yf and the subscripts on ψ0, φ0, θ ′
1 and θ 0 denoting

the asymptotic order have been dropped. Note that the coupling between ψ and
φ occurs through the slow variable Z via stretching due to the Coriolis force. The
nonlinearities in the momentum equations (2.24a, b) arise solely through horizontal
advection. We also remark on the absence of vertical diffusion of the fluctuating
quantities, a geometric consequence of the assumption AZ � 1. This reduction in the
order of the system in the vertical relegates boundary-layer effects to higher order
and renders them passive (Julien & Knobloch 1998). Consequently, we need only
employ impenetrable boundary conditions on the upper and lower surfaces together
with appropriate temperature boundary conditions. When the boundary conditions
are no-slip, the velocity boundary layer is of depth λ ∼ O(Ro3/2Re−1/2) relative to H ,
and its structure can be deduced from the instantaneous interior solution.

Equations (2.24) possess an unexpected reflection symmetry

(x, y) → (x, −y), (ψ, φ, θ ′, θ) → (−ψ, −φ, −θ ′, θ), (2.25)

that is absent in the original equations (2.1). This extra symmetry is a consequence
of the absence of pseudoscalar terms in (2.24), and its consequences are profound:
at leading order, rotationally constrained flows with Ro � 1 have the same symmetry
properties as non-rotating flows (Julien & Knobloch 1999), even though at finite
Ro this is no longer so; the horizontal velocity components u′

⊥ ≈ u′
0⊥ + Ro u′

1⊥
in (2.23) do not share this symmetry. The full flow does, therefore, manifest the
handedness expected of a rotating system and present in the Navier–Stokes equations
in primitive variables. However, the presence of this asymptotic symmetry has
important consequences for the types of solutions admitted by these equations and
their stability. In particular, in the limit Ro � 1 the Küppers–Lortz instability is
suppressed, and the preference for cyclonic coherent structure disappears.

2.4. Rotating Rayleigh–Bénard convection

Equations (2.24) represent the generic reduced equations. If we choose U ≡ ν/L as the
velocity scale for viscous diffusion in the horizontal and L2/ν for the corresponding
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time scale, then

Re ≡ 1, P e ≡ Pr, Γ̃ ≡ εRa

P rA3
Z

, Ro = A2
ZE = ε, AZ = ε−1. (2.26)

Thus, E ≡ Ro3 = ε3 and Γ̃ ≡ ε4Ra/P r . We therefore introduce the scaled Rayleigh

number R̃a := ε4Ra ≡ E4/3Ra, such that Γ̃ = R̃a/P r is of order one. These relations
are consistent with linear theory for rapidly rotating convection (Chandrasekhar
1961). Moreover, one rotation period 2π/Ω is equivalent to the non-dimensional time
4πE1/3. The rescaled equations are

∂t∇2
⊥φ + J (ψ, ∇2

⊥φ) + ∂Zψ =
R̃a

Pr
θ ′ + ∇4

⊥φ, (2.27a)

∂t∇2
⊥ψ + J (ψ, ∇2

⊥ψ) − ∂Z∇2
⊥φ = ∇4

⊥ψ, (2.27b)

∂tθ
′ + J (ψ, θ ′) + ∇2

⊥φ∂Zθ = Pr−1∇2
⊥θ ′, (2.27c)

∂T θ + ∂Z(θ ′∇2
⊥φ) = Pr−1∂2

Zθ, (2.27d)

and are used in this form in our numerical simulations (modulo a small modification
discussed in § 3).

2.5. Infinite Prandtl number

Our investigations indicate that it is also of interest to consider rapidly rotating
convection in the limit of infinite Prandtl number. For this problem, the appropriate
time scale is the horizontal thermal diffusion time. With the substitutions

t → Pr t, T → Pr T , ψ → ψ

Pr
, φ → φ

Pr
, (2.28)

the system (2.27) becomes, in the limit Pr → ∞,

∂Zψ = R̃aθ ′ + ∇4
⊥φ, (2.29a)

−∂Z∇2
⊥φ = ∇4

⊥ψ, (2.29b)

∂tθ
′ + J (ψ, θ ′) + ∇2

⊥φ∂Zθ = ∇2
⊥θ ′, (2.29c)

∂T θ + ∂Z(θ ′∇2
⊥φ) = ∂2

Zθ. (2.29d)

In this system, the velocity field adjusts instantaneously to the thermal fluctuations.

2.6. Boundary conditions

In all the simulations that follow, we employ impenetrable fixed-temperature boundary
conditions, i.e.

φ|Z=0 = φ|Z=1 ≡ 0, θ ′|Z=0 = θ ′|Z=1 ≡ 0, θ |Z=0 = 1, θ |Z=1 = 0. (2.30a–d)

The governing equations then give

∂Zψ |Z=0 = ∂Zψ |Z=1 ≡ 0, ∂2
Zφ

∣∣
Z=0

= ∂2
Zφ

∣∣
Z=1

≡ 0, (2.31a, b)

implying a natural association at leading order with stress-free boundary conditions.
As noted earlier, other velocity boundary conditions lead to passive boundary
layers (see, for instance, the O(E1/2) Ekman boundary layer associated with no-
slip boundaries), which can be computed a posteriori once the interior solution is
known.



150 M. Sprague, K. Julien, E. Knobloch and J. Werne

100 104 108 1012

103

106

109

1012

100 10–2 10–4 10–6

Ra

Ta

E

Ro co
nv 

= 1

Ro co
nv 

= 0.2

Ro co
nv

= 0.05

∼
∼

Ra =
160

Ra = 40

Figure 1. Ra vs. T a parameter space demarcating (i ) the critical Rayleigh number for onset
of steady convection in the presence of fixed temperature and stress-free boundaries (solid
line), (ii ) lines of constant reduced Rayleigh number E4/3Ra (dashed lines), and (iii ) lines of
constant convective Rossby number Roconv (dotted lines), for Pr = 7.

2.7. Linear stability results

For the purpose of providing a basis for interpreting the results from our numerical
simulations of the reduced equations (2.27), we briefly summarize the linear stability
properties of the conduction state,

ψ = φ = θ ′ = 0, θ = 1 − Z, (2.32)

for the reduced equations. These can also be deduced by taking the Ro ≡
E1/3 � 1 limit of the corresponding results obtained from the unscaled system
by Chandrasekhar (1961). In this limit, the results become independent of the
velocity boundary conditions at the top and bottom of the layer. We finds that
for Pr > Pr∗ ≈ 0.676605 the conduction state loses stability to monotonically growing

perturbations with horizontal wavenumber k̃ at

R̃a
(s)

= k̃4 +
π2

k̃2
. (2.33)

The minimum value of R̃a
(s)

and the corresponding critical wavenumber are given by

R̃a
(s)

c = 3

(
π2

2

)2/3

≈ 8.6956, k̃(s)
c =

(
π2

2

)1/6

≈ 1.3048. (2.34)

The critical wavelength is thus Lc =2π/k̃(s)
c ≈ 4.8154. The bifurcation to oscillations

that are preferred for Pr < Pr∗ is not of interest in what follows.
In § 4, we report on numerical simulation results in the range R̃a

(s)

c � R̃a � 160
of scaled Rayleigh numbers, and various values of Pr � 1. In the Rayleigh number
(Ra) vs. Taylor number (T a ≡ E−2) parameter space (figure 1), lines of constant

R̃a correspond to lines of constant slope 2/3 above the onset of bulk convection
(see the solid line and equation (2.34)). Also shown, for comparison with previous
investigations (Boubnov & Golitsyn 1995; Julien et al. 1996a,b; Liu & Ecke 1997),
are the (dotted) lines of constant convective Rossby number Roconv = E

√
Ra/P r for
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R̃a Nu = − ∂Zθ 0|Z=1 −∂Zθ 0|Z=1/2 R̃a Nu = − ∂Zθ 0|Z=1 −∂Zθ 0|Z=1/2

8.6956 1.0000 1.0000 40 19.177 0.14933
10 1.3253 0.77356 80 59.291 0.07403
20 5.3583 0.31080 160 164.06 0.03693

Table 1. Mean temperature gradients at Z = 1 and Z =1/2 deduced from the single mode
solutions of Julien & Knobloch (1998, 1999).

Pr = 7, representing the ratio of the rotation period to buoyancy free-fall time. These
have slope 1. As already mentioned, the convective Rossby number is a precise
a priori measure of the importance of rotation as Ra is varied (Julien et al. 1996b),

and remains small even when Ra = E−4/3R̃a, namely, Roconv = E1/3

√
R̃a/P r . This

observation leads to three important remarks concerning the interpretation of the

simulation results that follow in § 4. First, for R̃a = O(1) the limit of small Rossby
numbers is equivalent to the requirement E1/3 � 1; the numerical simulation results
that follow apply to rotating convection only in this limit. Secondly, the range of
supercritical Rayleigh numbers for which convection is strongly affected by rotation
increases with rotation. Finally, for primary geostrophic balance we require that

Roconv � 1, i.e. E1/3

√
R̃a/P r � 1, a constraint on the magnitude of the permitted

R̃a that is weaker than the formal requirement R̃a = O(1). For comparison, for
Roconv � 0.2 experiments of Sakai (1997), which span 8.6 × 105 � Ra � 8.2 × 107,
9.1 × 105 � T a � 1.1 × 109, and those of Vorobieff & Ecke (2002), which span 0 �
Ta � 1010 at Ra = 3.2 × 108, correspond to 23 � R̃a � 144 and R̃a � 171 respectively.

2.8. Single-mode solutions

A remarkable feature of equations (2.27) is that they admit exact single-mode (i.e.
single-wavenumber) nonlinear solutions in separable form φ = Φ(Z)h(x, y), where
h(x, y) satisfies the planform equation

∇2
⊥h = −k̃2h, h2 = 1. (2.35)

Examples of the resulting planform functions are provided by rolls, squares, hexagons,
regular triangles and the patchwork quilt (Julien & Knobloch 1998). For these
solutions J (h, ∇2

⊥h) ≡ 0 and all nonlinearities vanish identically, with the exception
of the convective flux term in (2.27d) responsible for the distortion of the mean
temperature profile. For a given R̃a, the reduced equations then collapse into a
nonlinear two-point boundary-value problem for the vertical mode structure (Bassom
& Zhang 1994; Julien & Knobloch 1999):

∂2
ZΦ +

(
R̃a Nu

1 + Pr2k̃2Φ2
− k̃6

)
Φ = 0, Φ(0) = Φ(1) = 0, (2.36)

valid for all steady planforms h. Here, Nu denotes the non-dimensional heat transport,
or Nusselt number (Nu = − ∂Zθ |Z =1 = − ∂Zθ |Z = 0, owing to symmetry), and is
determined as an eigenvalue. Since the dependence on Pr can be removed by a
simple rescaling of Φ , the resulting Nu(R̃a) relation is independent of Pr . Values of

Nu for various R̃a are given in table 1.
A comparison of these exact (but non-turbulent) results with the simulation results

that follow is informative. For this purpose we give in table 1 the corresponding
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numerical values for the mean temperature gradient

∂Zθ = − Nu

1 + Pr2k̃2Φ2
, (2.37)

at Z =1/2 and Z = 1, for various values of R̃a. Inspection of equation (2.36) suggests

that, for large amplitudes, Φ2 ∼ O(R̃aNu), from which it follows that −∂Zθ
∣∣
Z=1/2

∝
R̃a

−1
. Thus, an isothermal interior develops as R̃a → ∞.

3. Numerical method for simulation of the reduced equations
We examine numerical solutions to the reduced systems (2.27) and (2.29) in a box

with dimensions Lx × Ly × 1 with periodic boundary conditions in the horizontal;
periodic boundary conditions are used to approximate a horizontal domain of infinite
extent. Note that the physical dimensions of the box are LxE

1/3H × LyE
1/3H × H .

Spatial discretization of (2.27) (for finite Pr number) and (2.29) (for Pr → ∞) is
achieved with Nx/2 × Ny/2 Galerkin–Fourier periodic modes in the horizontal. We
use a Chebyshev-tau discretization in the vertical (Gottlieb & Orszag 1977) with NZ

modes. The use of Chebyshev modes in the vertical allows a clustering of degrees of
freedom near the boundaries, which is desirable for resolving the sharp gradients in θ

and θ ′ that are expected near the upper and lower boundaries. Tau correction is used
to enforce boundary conditions (2.30a, b) and (2.31a). In our simulations, spatial and
temporal discretization is chosen to resolve all scales; no subgrid-scale modelling is
employed.

The systems (2.27) and (2.29) are composed of five independent variables
(x, y, Z, t, T ). However, following the preliminary investigations of Julien et al. (1998),
we set ∂T θ ≡ 0 and replace the spatio-temporal averaging over x, y, t by a simple
spatial averaging, a procedure supported by the observation that ∂T θ → 0 as t → ∞.
Moreover, for statistically steady states, Julien et al. (1998) find that, in a sufficiently
large box, the accumulation of averages in t becomes equivalent to horizontally
averaging across rising and falling plumes. Accordingly, for the simulations we replace
(2.27d) and (2.29d) by

∂Zθ = −1 + Pr(θ ′∇2
⊥φ − 〈θ ′∇2

⊥φ〉Z), (3.1)

and

∂Zθ = −1 + (θ ′∇2
⊥φ − 〈θ ′∇2

⊥φ〉Z), (3.2)

respectively, where, as indicated above, the overbar now denotes horizontal spatial
averaging and 〈 · 〉ξ denotes the average operation over an independent variable ξ

over ξ1 � ξ � ξ2:

〈f (ξ )〉ξ =
1

ξ2 − ξ1

∫ ξ2

ξ1

f (ξ ) dξ. (3.3)

For the above, Z1 = 0 and Z2 = 1. As a consequence of this approximation, our results
are only valid in the statistically steady-state regime.

Time integration is achieved with a Runge–Kutta method developed by Spalart,
Moser & Rogers (1991). Formally, the method is second-order accurate. However, the
coefficient on the third-order term is small, and third-order accuracy is observed. In
our use of this method, buoyancy, diffusion, and rotation terms are treated implicitly;
advection terms and ∇2

⊥φ∂Zθ are treated explicitly. Although it is common to treat
rotation terms explicitly, e.g. Julien et al. (1996a), our numerical investigations with
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Box dimensions Grid resolution

R̃a P r
(
E1/3H × E1/3H × H

)
Nx × Ny × NZ 	tavg

20 1 10Lc × 10Lc × 1 64 × 64 × 65 0.196 × 10−1

20 7 20Lc × 20Lc × 1 128 × 128 × 65 0.144 × 100

20 ∞ 20Lc × 20Lc × 1 128 × 128 × 65 0.182 × 10−1

40 1 10Lc × 10Lc × 1 96 × 96 × 97 0.498 × 10−2

40 7 20Lc × 20Lc × 1 192 × 192 × 97 0.164 × 10−1

40 ∞ 20Lc × 20Lc × 1 192 × 192 × 97 0.145 × 10−2

80 1 10Lc × 10Lc × 1 128 × 128 × 129 0.173 × 10−2

80 7 20Lc × 20Lc × 1 256 × 256 × 129 0.472 × 10−2

80 ∞ 20Lc × 20Lc × 1 256 × 256 × 129 0.405 × 10−3

160 1 10Lc × 10Lc × 1 256 × 256 × 257 0.407 × 10−3

160 7 20Lc × 20Lc × 1 512 × 512 × 257 0.128 × 10−2

160 ∞ 10Lc × 10Lc × 1 256 × 256 × 257 0.128 × 10−2

Table 2. Model parameters used in the simulations. Horizontal box dimensions are shown as
a function of the critical length Lc = 4.8154.

this approach exhibited severe CFL (Courant–Friedrichs-Lewy) restriction in time-
step size, owing to fast propagating inertial waves on the domain scale. All fields are
de-aliased with the standard 2/3 rule at each time substep. Further details regarding
spatial and temporal discretization methods are discussed in Appendix A.

Table 2 gives the numbers of spectral modes used for each of the simulations
discussed in this paper. Grid resolution was justified a posteriori ; steady-state solutions
were checked to ensure that at least 5 grid points were in the θ ′ root-mean-square
(RMS) boundary layer in the vertical and 10–12 grid points in the mean temperature
boundary layer; energy spectra were checked to ensure sufficient resolution in the
horizontal.

The evolution to a statistically steady state was found to be insensitive to initial
conditions. All solutions were therefore initialized with either random noise or a
specified noise-perturbed single-mode pattern (e.g. rolls, squares or hexagons).

4. Results
In this section, we describe the results obtained via numerical simulation of the

reduced equations (2.27) and (2.29), with (2.27d) replaced by (3.1), and (2.29d) replaced
by (3.2). As discussed in § 3, these equations describe correctly the statistically steady-
state regime, but shorten the transient required to reach this state. For numerical
simulation in three dimensions, this property is a distinct advantage.

4.1. Flow morphology

Our simulations reveal the presence of three distinct flow regimes as R̃a increases.
The transitions between these regimes are reflected in both the flow morphology and
in statistical measures, and depend on the Prandtl number.

In this section, we describe the morphology of the flow in each of these regimes.
Motivated by visualizations in recent laboratory experiments using water (Boubnov
& Golitsyn 1986; Sakai 1997; Vorobieff & Ecke 1998, 2002), we begin with Pr = 7.
Figure 2 shows isometric-view volume-rendered snapshots of the temperature anomaly

field θ ′ for R̃a = 20, 40, 80 and 160 taken in a statistically steady state; the Prandtl-

number dependence of these results is indicated in figure 3 for R̃a =40. In both
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(a) (b)

(c) (d)

Figure 2. Isometric-view snapshots of volume-rendered temperature anomaly θ ′ for Pr = 7
and different Rayleigh numbers R̃a. (a) R̃a = 20; (b) 40; (c) 80; (d) 160. Colour tables are on
the left-hand side of each figure; black regions indicate field values with zero opacity.

(a) (b)

(c) (d)

Figure 3. As figure 2 but for R̃a = 40 and different Prandtl numbers Pr . (a) Pr = 1; (b) 3;
(c) 7; (d) → ∞.
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(a) (b) (c)

Figure 4. Snapshots of vertical vorticity ω′
3 in the (x,y) plane at Z =0 when R̃a = 20 and

Pr = 1, illustrating the development of the zigzag instability. (a) t = 0; (b) t ≈ 7.1; (c) t ≈ 7.7.

figures, red and blue indicate regions that are, respectively, warm and cold relative
to the mean temperature θ . The colour tables used in each case are shown on the
left-hand side; black regions indicate values for which opacity has been set to zero
(i.e. points with temperature in this range are invisible). Guided by the RMS profiles
(§ 4.6), opacity distributions were chosen to highlight coherent structures within the
flow. The non-dimensional box dimensions are approximately 96 × 96 × 1; the aspect
ratio visible in the figure is therefore not to scale. Evidently, for the volumes shown,
the computational boxes (in conjunction with periodic boundary conditions) are
sufficiently large to represent an infinite fluid layer.

Above the onset value R̃a
(s)

c , we observe neither the stable cellular states identified
by single-mode theory, nor the weakly nonlinear Küppers–Lortz roll-switching states.
Instead, perturbed single-mode solutions or random initial states exhibit a short
wavelength zigzag type of instability, an example of which is shown in figure 4, which
leads to the destruction of the original roll pattern and its replacement for a brief
instant by an orthogonal pattern, which then breaks up into a three-dimensional time-
dependent state (cf. Cox & Matthews 2000). This state develops into a statistically
steady state consisting of a large population of columnar structures spanning the
entire depth of the layer. As a consequence, these columns act as very efficient
conduits for heat transport, and so carry a large fraction of the heat flux, a property
enhanced by their close spacing. This spacing corresponds to the linear stability theory
prediction (2.34). Given the primary geostrophic balance inherent in the asymptotic
theory, we refer to these structures as thermal Taylor columns. Visualizations of the
vertical velocity field w′ (not shown) indicate that cold (warm) thermal columns
are associated with downwelling (upwelling) fluid. The vorticity field also indicates
that each column has an antisymmetric signature in cyclonicity about the midplane
Z = 1/2. For example, a cold column of downwelling fluid is cyclonic in the upper
half of the layer, but has anticyclonic vorticity in the lower half. The opposite is true
for warm Taylor columns. This is a consequence of angular momentum conservation
in the rotationally constrained regime (Roconv � 1), which results in intense cyclonic
spin-up and anticyclonic spin-down for accelerating and decelerating fluid parcels,
respectively (Boubnov & Golitsyn 1986; Julien et al. 1996a; Sakai 1997; Vorobieff &
Ecke 1998, 2002). However, in no case did we find a stationary vortex grid such as
those found by Boubnov & Golitsyn (1986) at moderate Rossby numbers. Instead,
the columns are observed to be continuously in motion, devoid of annihilation or
merger events, much as observed by Sakai (1997) for Roconv ≈ 0.1.
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For R̃a = 40, the Taylor column population has decreased. Figure 2(b) shows
the emergence of oppositely signed ‘sleeves’ surrounding each column. A thorough
investigation (see § 4.2) shows that these sleeves extend across the layer and are also
present in the vertical vorticity and vertical velocity fields. Animations show that the
columns now migrate very slowly, an effect we attribute to mutual shielding produced
by the sleeves. In the following, we refer to this state as the geostrophic vortex regime,
and use the presence of the sleeve in the thermal field as a defining characteristic of
this regime. Thresholding of the RMS convective flux w′θ ′ as a function of depth
indicates that, despite their increased spacing, these vortices transport as much as
60% of the heat flux.

The tendency for increased spacing as a function of Ra at fixed E has been
observed in recent experiments and incorporated in scaling laws based on vortex
census data (Boubnov & Golitsyn 1986; Sakai 1997). These authors find that the

mean separation between neighbouring vortices is proportional to R̃a
1/9

E1/54 (in our
scaled parameters), the former using a power-law fit to observations, the latter using
a theory that relies on the classical 1/3 heat transport law that is not observed
here. Although the predicted dependence on E is weak, in our asymptotic regime
any prediction must be independent of E. Given the need for a greater parameter
space survey to accumulate census data and the subtleties inherent in vortex selection
criteria, we do not pursue similar fits in this paper.

For more aggressive forcing (R̃a = 80 and R̃a = 160) the Taylor columns are
destroyed, and we identify the resulting irregular flow with the geostrophic turbulence
regime (Boubnov & Golitsyn 1986), and refer to the coherent structures observed
in this regime as thermal plumes. These emanate from upper and lower thermal
boundary layers, and consist of two populations, cyclonic and anticyclonic near each.
This observation is consistent with the discovery by Vorobieff & Ecke (2002) of a
distinct topological change, with decreasing Rossby number, from a single population
of cyclonic vortices seen at moderate Rossby numbers (0.2 <Roconv < 0.75) in both
experiments and simulations (Julien et al. 1996a), to a two-population state consisting
of cyclonic and anticyclonic vortices at smaller Rossby numbers. The transition
reflects a change in the instability mechanism in the thermal boundary layer from one
consisting solely of plume ejection to one that permits, on an equal footing, plume
ejection and injection.

In the geostrophic turbulence regime, the column sleeves in the thermal field are
largely absent, although they continue to be present in the vertical velocity and
vorticity fields (see § 4.3). This is a consequence of the destruction in this regime of
the coherent columnar conduits that were so efficient at transporting heat. As such,
the thermal content (or buoyancy flux) of interior fluid parcels is either continually
eroded or completely entrained into the ambient fluid. Indeed, animations in this
regime reveal intense vortex–vortex interaction and mergers. The resulting saturation
of the mean temperature gradient (see § 4.5) is described by the balanced relation

Prθ ′∇2
⊥φ∂Zθ = −|∇⊥θ ′|2, (4.1)

obtained from equation (2.27c). We can also derive the following exact relation from
equations (2.27a, b) together with (4.1):

R̃a|∇2
⊥θ ′|2 = −Pr2[|∇⊥∇2

⊥φ|2 + (∇2
⊥ψ)2]∂Zθ. (4.2)

If the dominant dissipation scale is unchanged, these relations indicate that a reduction

in buoyancy flux at fixed R̃a and Pr can only be compensated by an increase in the
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mean temperature gradient ∂Zθ . Similarly, if a process induces enhanced mixing in
θ ′, while not commensurately mixing ψ and φ, then ∂Zθ must increase. It is therefore
the breakdown of the coherent Taylor columns that initiates the saturation of the

mean temperature gradient with increasing R̃a discussed in § 4.5. Note that if the
characteristic horizontal scale of the thermal structure of the column becomes too
large radially, it will stretch across the interface between the vortical core of the
column and its shielding sleeve. When this happens, the edges of the thermal field
of the column will become sheared and mixed with the ambient fluid. This will
introduce an irregular buoyancy force just outside the column, which will lead to
the demise (if sufficient buoyancy is present) of the well-defined vortical structure of
the shielded column. Hence, it is advantageous for column stability for the thermal
structure to remain more compact than the vortical structure. As Pr is increased,
the thermal structure becomes relatively more compact. This is because, with Pr � 1,
concentration of the temperature field is more easily maintained than concentration of
the velocity and vorticity field. Thus, we expect enhanced column stability at larger Pr ,
i.e. we expect the transition to geostrophic turbulence to be delayed, as discussed next.

Figure 3 shows isometric-view volume-rendered snapshots of θ ′ at R̃a = 40 and
Pr = 1, 3, 7, and Pr → ∞. While there appear to be coherent structures spanning
the depth of the fluid even when Pr =1, these are not the distinct Taylor columns
seen for Pr � 3. In fact, for Pr = 1, animations demonstrate the presence of strong
vortex–vortex interactions and mergers. Furthermore, the saturation in the mean

temperature profile for R̃a � 20 (see § 4.5) indicates that the geostrophic turbulence
regime has been entered, a conclusion supported by the disappearance of temperature
sleeves surrounding the plumes. In contrast, the sleeves remain visible for Pr � 3 and

the flows remain in the geostrophic vortex regime until R̃a ≈ 40 (Pr = 7), and R̃a ≈ 80
(Pr → ∞). The convective ring mode seen in some experiments with a free-surface
fluid layer driven by a constant heat flux from below (Koschmieder 1967; Boubnov &
Golitsyn 1986) cannot be realized in our system with periodic boundary conditions
in the horizontal.

4.2. Structure of Taylor columns

Owing to subtleties in the trade-off between opacity thresholding and optimization of
flow visualization, the structure of the Taylor columns is not completely captured in
the volume-rendered snapshots of figures 2 and 3. It is therefore instructive to analyse
the horizontal cross-sections of the Eulerian fields.

Figure 5 shows grey-scale cross-sections of the vertical vorticity field ω′
3 at the

lower boundary (Z = 0) for all combinations of R̃a and Pr summarized in table 3. As
indicated by the RMS profiles discussed in § 4.6, this location corresponds to maximal
vertical vorticity. The near-boundary structure of w′ and θ ′ is virtually identical (not

shown). Moreover, in the range of R̃a with coherent Taylor columns, R̃a � 40 for

Pr = 7 and R̃a � 80 for Pr → ∞, cross-sections in all fields taken at different heights
demonstrate an extraordinary degree of coherence of these structures in the vertical,
and indicate that the Taylor columns are vertically upright and symmetric about the
midplane in θ ′ and w′, and antisymmetric in ω′

3. These plots reveal the presence of
two populations of shielded vortices consisting of a cyclonic (or anticyclonic) core
surrounded by an anticyclonic (or cyclonic) sleeve in the top half of the layer and the
reverse in the bottom half. The nature of the fluid flow associated with these Taylor
columns can be inferred from the azimuthally averaged line profiles shown in figure 6

for Pr = 7 and R̃a =40, 80 and 160. Figure 6 indicates that the profiles of all fields
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Figure 5. Snapshots of vertical vorticity ω′
3 in the (x,y)-plane at Z = 0 in a statistically

steady state. Each snapshot is of a 10Lc × 10Lc section.

are oscillatory and damped. Moreover, the characteristic sizes of the vortex cores
in the vertical vorticity and temperature anomaly are virtually identical and always
greater than in the profile associated with the vertical velocity. Figure 7 shows fits
to the (azimuthally averaged) profiles of temperature, vertical velocity and vertical
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R̃a P r t1, t2 〈Nu〉t ± [〈(Nu − 〈Nu〉t )
2〉t ]

1/2 〈−∂Zθ |Z=1/2〉t

20 1 40.2, 449 4.106 ± 0.129 0.4044
20 7 300, 5249 4.090 ± 0.040 0.3574
20 ∞ 100, 1509 3.426 ± 0.038 0.3832
40 1 50.0, 615 11.84 ± 0.61 0.3289
40 7 200, 1490 15.53 ± 0.08 0.1813
40 ∞ 50.2, 265 15.54 ± 0.10 0.1958
80 1 10.0, 173 29.85 ± 1.54 0.3757
80 7 50.2, 254 47.44 ± 0.87 0.1909
80 ∞ 15.0, 55.0 67.74 ± 0.67 0.1086

160 1 10.0, 30.3 84.87 ± 5.48 0.3773
160 7 15.0, 68.0 102.9 ± 1.94 0.2674
160 ∞ 8.00, 18.4 292.4 ± 9.8 0.1078

Table 3. Values of 〈Nu〉t and the time interval [t1, t2] over which the averages are calculated.
Also shown are time-averaged mean-temperature gradients calculated at the midplane.
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Figure 6. Azimuthally averaged radial structure of normalized θ ′, w′, ω′
3, and the circulation

K for a typical Taylor column (a, b) and plumes (c, d) when Pr = 7. The azimuthal velocity
field is defined as uϑ = K/r (not shown). Normalizing values are (69.4, 2.28, 34.5, 22.0) in (a),
(14.0, 9.79) in (b), (99.4, 6.79, 95.2, 43.6) in (c), and (316, 31.8, 277, 86.9) in (d). Circulation and
vorticity have been omitted in (b) as they are virtually zero at the midplane. (a) R̃a = 40, Z = 0+;
(b) 40, 1

2
; (c) 80, 0+; (d) 160, 0+.

vorticity using trial functions of the form α exp(−βr)J0(ζ r), where J0 is the Bessel
function of the first kind and order zero. The fits have a high confidence level and
suggest acceptable models for the radial structure of the observed shielded vortices.
However, we have not succeeded in deriving exact solutions of this type.
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Figure 8. Boundary-layer structure of w′, ω′
3 and circulation K in the Sullivan vortex

(Sullivan 1959; Goncharov & Gryanik 1987).

The observed profiles share similarities with those of the Sullivan vortex shown
in figure 8 (Sullivan 1959; Goncharov & Gryanik 1987), which constitutes an exact
boundary-layer solution to the non-rotating Navier–Stokes equations. However, the
Sullivan vortex solution contains only one axisymmetric cell together with a second
and much broader cell that extends to infinity. The major differences between the
Sullivan solution and the vortices observed in our simulations occur in the vorticity
and azimuthal velocity fields (figure 6a). We always find that the maximal vorticity
occurs on the column axis and not at some finite distance away from it. Moreover,
the sleeves associated with our vortices are characterized by reversals in both vorticity
and azimuthal velocity, a property not shared by the Sullivan vortex. Significantly,
figure 6(a) shows that, as a consequence of the vortex core–sleeve structure, the circula-
tion decays to zero at infinity. The resulting shielding implies that the vortices interact
only weakly, behaving like dilute particles with zero circulation. In contrast, Sullivan
vortices (figure 8) have finite circulation at infinity, and therefore interact strongly.

To our knowledge, there is no definitive experimental study of convective vortex
structures in the geostrophically controlled limit, although Vorobieff & Ecke (1998,
2002) are able to deduce velocity fields and instantaneous streamlines using PIV
measurement techniques. However, no data on the spatial structure of the vorticity
field is available, and the detection of a weak counter-cell appears to be at the
resolution limit of this technique.

4.3. Thermal plumes

Our numerical simulations indicate that the Taylor columns lose stability for large

enough R̃a (R̃a > 10 for Pr = 1; R̃a > 40 for Pr = 7; R̃a > 80 for Pr → ∞),
and are replaced by thermal plumes. These are typically non-axisymmetric, although
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evidence for a shielding sleeve structure in the vorticity and velocity fields after the
transition can be identified (figure 6c, d). However, the plumes now have strong
finite net circulation (figure 6b, c), and are thus exposed to strong interaction forces
expected of unshielded vortices (figure 5). We surmise therefore that the Taylor
columns lose stability through a deshielding process that results in the development
of a net circulation that exposes the column to strong long-range interaction forces,
and conjecture that this is the process that leads to the transition between what
experimentalists refer to as the ‘vortex-grid’ regime and the regime of irregular
geostrophic turbulence.

If we adopt the view that plumes are merely ejected pieces of an unstable thermal
boundary layer, it follows that in the geostrophic turbulence regime the horizontal
scale of the plumes will decrease with increasing R̃a as a consequence of the decreasing
thickness of the thermal boundary layer. The mean spacing between plumes also
decreases as R̃a increases. This leads to an increased plume number density and
significant plume–plume interaction. The resulting vortex dynamics are, in fact,
reminiscent of interactions between shielded vortices (Carton 1992). Specifically, in
addition to mergers of like-signed vorticity, we also observe peripheral interactions
leading to streamer formation without interactions between the cores. This is reflected
in the preponderance of filamentary streaks in the Pr = 1 solutions (see figure 5). The
long filamentary streaks of opposite vorticity are signatures of such pairings. Similar
behaviour is seen in the barotropic instability of isolated shielded vortices (Carton
1992). Finally, plumes with tripole structure can also be identified (see, e.g. the results

for R̃a = 80 and Pr = 7 in figure 5).

4.4. Heat transport

The statistical quantity of primary interest is the mean heat flux across the fluid
layer. In the statistically stationary regime, this flux is independent of height, and
can therefore be measured at one of the boundaries. In our simulations, we track the
Nusselt number at the top of the layer, namely, Nu = −∂Zθ |Z=1. The mean temperature
gradient is in turn given by equations (3.1) and (3.2) according to whether Pr is finite
or infinite. In the absence of convection, θ =1 − Z and Nu = 1. The dependence of
Nu on the non-dimensional parameters Ra and E has been of particular interest
to both theorists and experimentalists ever since Rossby’s original survey (Rossby
1969). In fact Nu depends on Pr as well as the domain aspect ratio A and the
boundary conditions. In the limit of rapid rotation, E1/3 � 1, appropriate for our
reduced equations, predictions valid for Pr � ∞ include

Nu =
1

256
x3

(
1 +

3

x

)4

, x ≡ R̃a

R̃a
(s)

c

, (4.3)

based on a parameter-free turbulence model (Canuto & Dubovikov 1998), and

Nu = C R̃a
3
, (4.4)

where C is a constant, obtained by variational methods (Chan 1974; Hunter & Riahi
1975; Riahi 1977). These predictions should be compared with the upper-bound result
for Pr � 1 (Constantin, Hallstrom & Putkaradze 1999, 2001)

Nu � 1 + C Ra2/5 ≡ 1 + C E−8/15R̃a
2/5

. (4.5)

In contrast, numerical simulations by Julien et al. (1996b) and subsequent laboratory
experiments by Liu & Ecke (1997) clearly demonstrate that, at fixed convective Rossby
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Figure 9. Representative Nu histories for R̃a = 40 and Pr = 1, 7, and Pr → ∞. Time is in
units of the horizontal thermal diffusion time.

number Roconv = E1/3

√
R̃a/P r , the Nusselt number scales like

Nu = a0 + a1R̃a
a2

, (4.6)

where a0, a1 and a2 denote coefficients that depend on Roconv, P r, A and the boundary
conditions. This relation is equivalent to the relation Nu = a0 + a1(Raa2 − Raa2

c )
used by Julien et al. (1996b); the more commonly used power-law fit Nu = a1Raa2

follows from the assumptions that Nu � 1, Ra � Rac. In particular, in the regime
105 � Ra � 5×108, 1.41×10−5 < E � ∞ and 1 � Pr � 7, covering 0.1 � Roconv < ∞,
the simulations reveal that the classical exponent a2 = 1/3 (Priestley 1959) arises for
free-slip boundaries only, while for rigid boundaries one finds instead the hard
turbulence exponent a2 = 2/7 (Siggia 1994). The reduced Rayleigh number covered by

these investigations spans R̃a
(s)

c � R̃a � 135. Unfortunately, we know of no predictions
of the dependence of Nu on Roconv and so cannot connect these results to those valid
in the regime of interest, namely, E � 1.

Figure 9 shows representative results obtained for R̃a =40 and three values of the
Prandtl number, Pr =1, 7 and Pr → ∞, as a function of the horizontal thermal
diffusion time. This time scale requires that we replace t by Pr t , and is used to
facilitate comparison of the finite Pr results with those obtained for Pr → ∞.
The usefulness of the reduced equations is immediately apparent; in all cases, the
solutions relax rapidly to a statistically steady state after a brief adjustment period.
This occurs irrespective of whether the initial condition is a single-mode solution
(not shown) or a perturbed conductive state (shown), the latter providing the gravest

constraint. For this value of R̃a, the Nusselt number traces for Pr = 7 and Pr → ∞
are nearly identical, and the average is substantially higher than that for Pr = 1. This
is expected because the vertical transport is more efficient at higher Pr where the
flow is organized into efficient heat transport columns, while the Pr = 1 vortices are
sleeveless and heat transport is reduced owing to lateral mixing. For other values of

R̃a, the Nusselt numbers at Pr = 7 and Pr → ∞ are not so similar (see table 3). Note
that the non-dimensional time for one rotational period is 4πE1/3/P r (see § 2.4). Thus,
the results shown in figure 9 span very many rotation times. In addition, the Pr = 1
solution exhibits prominent fluctuations about the mean. This is to be expected.
First and foremost, momentum fluctuations in the Pr = 7 and Pr → ∞ systems are
suppressed rapidly owing to increased viscous diffusion, yielding a relatively smooth
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time-dependent heat flux (w′θ ′). Secondly, the computational box size employed in
the Pr = 7 and Pr → ∞ cases is twice that for Pr =1, and fluctuations in these cases
are therefore reduced when computing horizontal averages.

Table 3 shows the time-averaged Nusselt number 〈Nu〉t , together with the averaging
interval t1 < t < t2 within which the system was deemed to be statistically stationary,
and the mean temperature gradient at mid-layer, −∂Zθ

∣∣
Z=1/2

. Also listed are the RMS

values of Nu − 〈Nu〉t , i.e. [〈(Nu − 〈Nu〉t )
2〉t ]

1/2. Figure 10 summarizes the behaviour

of 〈Nu〉t as a function of the scaled Rayleigh number R̃a for various Pr values. The
symbols in the figure are larger than the error bars corresponding to the RMS values
in table 3. For comparison, the figure also shows the values of 〈Nu〉t obtained from
the single-mode theory of Bassom & Zhang (1994) and Julien & Knobloch (1998,
1999) discussed in § 2.8. We see that the single-mode solutions consistently provide
an upper bound for the heat transport when Pr = 1, 7. This is not so, however, as
Pr → ∞. In this regime, we find that the fluid self-organizes into a highly efficient

state of heat transport that surpasses the single-mode result once R̃a � 80. Referring
to § 4.1, we see that this property of the flow is a consequence of the presence of
extremely stable columnar structures.

We use the data summarized in table 3 to obtain fits to the relation Nu =
Nu(R̃a, P r). For this purpose we consider power-law fits of the form

〈Nu〉t = a0 + a1R̃a
a2

, 〈Nu〉t = b0 + b1(R̃a − R̃a
(s)

c )b2 . (4.7)

The constants obtained from fits to the data for 20 � R̃a � 160 are given in table 4.
The fits indicate that the exponents are bracketed by the intervals 1.2 � a2 � 2.1

and 1 � b2 � 2. The single-mode theory indicates that, for the values of R̃a used,
the Nusselt number is not in the asymptotic regime characterized by the scaling
Nu ∼ R̃a log(R̃aNu) (Julien & Knobloch 1999). The fitted exponents also show that
the scaling exponent in (4.4) is too large for Pr → ∞, and therefore represents an
upper bound. However, we find no correlation between the Pr → ∞ results obtained
here and the prediction (4.3) put forward by Canuto & Dubovikov (1998); this
prediction dramatically underestimates the heat transport. Our results are, however,
consistent with the upper bound found by Constantin et al. (2001), although they
indicate that this bound overestimates transport by a large factor, namely, O(E−8/15).
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a0 a1 a2 NRMS error b0 b1 b2 NRMS error

Pr = 1 0.965 0.037 1.521 9.6 × 10−3 2.670 0.057 1.450 1.1 × 10−2

Pr = 7 0.000 0.175 1.258 5.3 × 10−2 −5.051 0.733 0.995 2.3 × 10−2

Pr → ∞ 0.000 0.007 2.112 8.1 × 10−4 −2.030 0.015 1.971 2.1 × 10−3

Table 4. Fitted values of the parameters in the functions 〈Nu〉t = a0 + a1R̃a
a2

and

〈Nu〉t = b0 + b1(R̃a − R̃a
(s)

c )b2 from the data shown in table 3. Also shown is the normalized
RMS (NRMS) error for the fits.
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Figure 11. Time-averaged heat transport 〈Nu〉t as a function of Pr for R̃a = 40. Dashed
lines about the solid line for Pr → ∞ correspond to the RMS error bars.

Figure 10 reveals that, at fixed R̃a � 40, the dependence of 〈Nu〉t on Pr is non-
monotonic. When R̃a = 40 〈Nu〉t increases with Pr to a maximum at Pr ≈ 6 (see
figure 11) before decreasing to the Pr → ∞ value. Similar non-monotonic dependence
on Pr has been observed in simulations of non-rotating Rayleigh–Bénard convection
(Kerr & Herring 2000). Evidently, certain Prandtl numbers favour spatial structures
that enhance heat transport, although detailed understanding of this process remains
elusive.

Comparison of the data shown in figure 3 with the 〈Nu〉t vs. Pr data in figure 11
illustrates a connection between effectiveness of heat transport and flow structure.

In particular, for R̃a = 40, we found that 〈Nu〉t was maximum when Pr =6, while
figure 3 shows that the case Pr = 7 has the most distinct columnar and sleeve structure
(of those shown).

4.5. Mean temperature distribution

As a measure of efficiency of vertical mixing, it is instructive to examine the profiles of

the mean temperature θ and their midplane gradients −∂Zθ |Z=1/2 as a function of R̃a;
these quantities are shown in figures 12 and 13, respectively. The corresponding single-
mode results are included for comparison. The latter evolve towards an isothermal

interior with increasing R̃a; in particular, the midplane mean temperature gradient

obtained from these solutions decreases like R̃a
−1

, as discussed in § 2.8. Similar
behaviour is observed in non-rotating turbulent Rayleigh–Bénard convection, but not
in the reduced equations. Figure 13 shows that, for all Pr , the mean temperature
gradient initially decreases monotonically, much as expected from the single-mode
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Figure 13. Time-averaged mean temperature gradient −∂Zθ at the midplane of the fluid

layer (Z =1/2) for different Pr as a function of R̃a. The single-mode solution is shown for
comparison.

results, but then saturates at some finite R̃a. For Pr = 1, this occurs for R̃a � 20, while

for Pr = 7 and Pr → ∞ the saturation appears to take place at R̃a ≈ 40 and R̃a ≈ 80,
respectively. However, for these Prandtl numbers, the saturation process becomes so
slow that without expensive computation we cannot establish that saturation has in

fact occurred in R̃a � 160. However, it is clear that even if complete saturation has not
been reached, the behaviour of the system departs dramatically at these parameter
values from the single-mode results and indeed from the behaviour familiar from
non-rotating Rayleigh–Bénard convection.
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a0 a1 a2 NRMS error b0 b1 b2 NRMS error

Pr = 1 0.001 38.08 −2.102 1.2 × 10−2 −0.001 2.014 −1.376 4.1 × 10−3

Pr = 7 0.000 36.60 −2.085 6.3 × 10−3 −0.001 2.003 −1.369 1.3 × 10−2

Pr → ∞ 0.000 84.02 −2.305 3.5 × 10−3 −0.001 3.421 −1.521 3.3 × 10−3

Table 5. Fitted values of the parameters in the functions 	BL = a0 + a1R̃a
a2

and 	BL =

b0 + b1(R̃a − R̃a
(s)

c )b2 for 20 � R̃a � 160. Also shown is the normalized RMS (NRMS) error
for the fits in the above range.

As discussed in § 4.1, we attribute this unexpected behaviour to enhanced lateral
mixing owing to the inherently vortical nature of the flow, as suggested by the
exact relations (4.1)–(4.2). The former states that buoyancy production by extraction
of heat from the mean temperature profile is balanced by thermal dissipation in the
horizontal. Our simulations indicate that prior to saturation ∇2

⊥φ θ ′ ∼ O(R̃a
γ
), γ > 0,

while ∂Zθ ∼ O(R̃a
−α

), γ > α > 0. Thus, horizontal dissipation scales like R̃a
γ −α

, in

contrast to the single-mode result log(R̃aNu). However, once the profile saturates,

horizontal dissipation becomes O(R̃a
γ
) and therefore increases more rapidly with R̃a

than in the initial phase. The appearance of these two regimes correlates well with
the absence or presence of coherent structures that span the depth of the fluid layer,
as discussed in § 4.1.

4.6. Flow statistics

In this section, we examine the vertical profiles of the time averages of the root-mean-
square temperature anomaly [θ ′]RMS , vertical velocity [w′]RMS , and vertical vorticity
[ω′

3]RMS , where, for any function f , [f ]RMS := 〈(〈〈f 2〉x〉y)
1/2〉t . Figure 14 shows the

profiles of these fields in 1/2 � Z � 1 for the cases shown in figure 10; the profiles
in 0 � Z � 1/2 are obtained by reflection in Z = 1/2. For the purpose of comparison
with the Pr → ∞ results, we have scaled the vertical velocity and vertical vorticity
results for Pr = 7 using the scaling Pr w′ → w′ and Pr ω′

3 → ω′
3.

We see that the [θ ′]RMS boundary-layer thickness 	BL decreases rapidly with

increasing R̃a, indicating the formation of a thermal boundary layer. In our
computations, the Chebyshev-grid distribution was such that 	BL was resolved with
at least five nodes in all cases. As with our quantification of the scaling of 〈Nu〉t , we
fit the boundary-layer thickness data to the relations

	BL = a0 + a1R̃a
a2

, 	BL = b0 + b1(R̃a − R̃a
(s)

c )b2 . (4.8)

Table 5 lists the values of the constants obtained from fits to the data for 20 �
R̃a � 160. For Pr = 1 and 7 we find that a2 ≈ −2 and b2 ≈ −1.4, while for Pr → ∞,
a2 ≈ −2.3 and b2 ≈ −1.5. We have insufficient data to make a judgement on the scaling
with respect to Pr .

All three fields exhibit a general trend. At lower R̃a, the profiles for Pr =7 and

Pr → ∞ are similar; the similarity is strongest at R̃a = 40. However, for more
aggressive forcing this resemblance ceases, and the Pr = 7 profiles begin to resemble
those for Pr = 1. From the results in § 4.1, we find that these trends are directly linked
to the flow structure within the layer.

The vertical vorticity profiles for R̃a = 20, 40 and Pr = 7, Pr → ∞ are indicative
of flow dominated by columnar structures spanning the fluid layer, as illustrated in
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showing the development of a thermal boundary layer with increasing R̃a. Only the top half of
the domain is shown; the profiles in the lower half are obtained by reflection in Z = 1/2. The

Pr = 7 results have been scaled using (Pr w′) → w′ and (Pr ω′
3) → ω′

3. (a) R̃a ≡ E4/3Ra =20;
(b) 40; (c) 80; (d) 160.
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′]RMS) for Pr = 7. Only the top half of the domain is shown; the profiles in
the lower half are obtained by reflection in Z = 1/2.

figures 2 and 3. Vorticity is injected at the boundaries and monotonically decays to
a minimum at the layer centre. The profiles also indicate that the flow approaches a

uniform state throughout the interior as R̃a increases. This is most clearly seen in the
Pr = 1 and Pr = 7 profiles. This uniform state in the interior is indicative of a fluid
that is well mixed through horizontal advection.

Finally, in figure 15, we show profiles of the ratio [w′]RMS/[u
′]RMS for Pr = 7 and

20 � R̃a � 160 in the top half of the layer; corresponding profiles for [w′]RMS/[v
′]RMS

are identical. The figure shows that when Taylor columns are present, vertical motions
dominate over horizontal ones at mid-layer, while in the geostrophic turbulence
regime, the flows are almost isotropic. These results are a reflection not only of the
columnar structure of the Taylor vortices in the geostrophic vortex regime, but also of
their spatial organization. They are also indicative of the breakdown of the columnar
structure in the geostrophic turbulence regime.

5. Conclusions
In this paper, we have examined the low-Rossby-number regime of Rayleigh–

Bénard convection. To overcome the limitations imposed by the simultaneous
requirement to resolve both fast inertial waves and thin viscous boundary layers
at the top and bottom of the layer we derived an asymptotically exact set of reduced
equations that captures much of the behaviour of Rayleigh–Bénard convection in this
regime. The reduced equations are derived by a systematic expansion procedure that
assumes that the dominant structures possess a small horizontal scale and that the
Rossby number based on this scale is also small. The resulting equations incorporate
Taylor–Proudman balance at leading order and are valid outside of the (passive)
boundary layers, i.e. in the bulk. This system of equations is of second order in
the vertical, and retains inertial waves on the scale of the depth of the layer only,
i.e. fast inertial waves whose vertical scale is comparable to the horizontal scale are
filtered out. The resulting system of equations is therefore amenable to extensive
direct numerical simulations, and similar computational advantages are likely to
exist for large-eddy simulations as well. In view of the extra reflection symmetry
present at leading order in the reduced system, preference for cyclonic structures over
anticyclonic ones is lost, an observation consistent with recent low Ro experiments.
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These structures are all in geostrophic balance despite their small horizontal scale,
and hence can be identified with Taylor columns.

Our simulations have revealed the presence of three distinct regimes of turbulent

convection. For relatively small values of the scaled Rayleigh number R̃a, the Taylor
columns extend across the layer depth, with mean separation of the order of the

linear theory wavelength. With increasing R̃a, this Taylor column regime gives way
to more intense but sparser Taylor columns with opposite-sign sleeves that shield
nearby columns and extend across the layer. As a result, the columns move more
slowly and retain their integrity over long times. Moreover, because of the more
intense up- and down-drafts in these columns, this regime is more efficient at vertical
heat transport. The resulting state resembles the geostrophic vortex regime seen in
experiments, although no ‘freezing’ into an ordered lattice takes place. With increasing

R̃a, the integrity of these columnar structures decreases and the columns are replaced
by long-lived structures that no longer penetrate the layer. The sleeves disappear
and with them the shielding of nearby vortices. As a result, we see sharply increased
interactions, and surmise that these are, in turn, responsible for the loss of integrity
of the columnar structures. These changes are accompanied by a reduction in the
efficiency of heat transport, and homogenization of the RMS velocity. We have
identified this regime with the geostrophic turbulence regime seen in experiments.

Our simulations indicate that the delineation of each of these regimes is quite sharp,
and that the morphological transitions we see in the flow are also reflected in a variety
of statistical measures such as the Nusselt number, mid-layer temperature gradient
and RMS velocities. This fact made it relatively easy to follow the transitions as a
function of the Prandtl number.

We have also seen that the inherent vortical nature of rapidly rotating flows leads to
significant lateral mixing at all Prandtl numbers. In most oceanic general circulation
models, convection is an unresolved process that must be parameterized. However,
most schemes used for this purpose (Marshall & Schott 1999) account only for mixing
in the vertical. Our simulations suggest, however, that lateral mixing should also be
incorporated in parameterizations of water mass transfer, and mixing of salinity,
density and temperature occurring on scales of several kilometres. Experiments by
Levy & Fernando (2002) have clearly illustrated the non-negligible role of lateral
mixing at low Ro for a deepening mixed layer.

The shielding of the vortices we see in the geostrophic vortex regime suggests that
models based on weakly interacting vortices may well provide a better description
of this regime than those based on strongly interacting localized structures such as
Sullivan vortices (favoured by Boubnov & Golitsyn 1995; Vorobieff & Ecke 1998,
2002) or ‘hetons’ (Legg & Marshall 1998; Marshall & Schott 1999). An alternative
model incorporating buoyancy forcing has been derived by Kuo (1966).

We do not currently understand why in some experiments the vortices tend to
organize themselves into a lattice. Three possible explanations suggest themselves.
The first is simply that some experiments are performed at finite Rossby numbers,
and this affects the stability of the lattice state. Such a state is admitted by our
reduced equations, and can be computed semi-analytically if all the vortices are taken
to be identical. The second is that the transition is associated with the breaking
of symmetry between cyclonic and anticyclonic vortices; vortex lattices have not
been observed in systems with such a symmetry and therefore under low-Rossby-
number conditions. Finally, it is possible that weak large-scale circulations driven
by lateral walls and centrifugal forces advect the vortices and in effect replace the
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vortex–vortex interactions that are lost owing to shielding. In some experiments
(Boubnov & Golitsyn 1986), the rotational Froude number FrΩ can be as large
as 0.34, suggesting that centrifugally driven flows may well be responsible for the
observed crystallization of the Taylor columns into triangular grids in the geostrophic
vortex regime (Boubnov & Golitsyn 1986). Experiments by Hart, Kittelman & Ohlsen
(2002) indicate that the behaviour of such large-scale circulation undergoes significant
changes with decreasing Rossby number.
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Appendix A. Numerical simulation details
In this Appendix, we discuss details of our numerical method for solving the

system (2.27) subject to boundary conditions discussed in § 2.6, but in the absence of
slow-time variation as discussed in § 3.

A.1. Horizontal spatial discretization

We discretize with Nx ×Ny evenly spaced nodes in the horizontal directions and use a
discrete Fourier transform (DFT) for all dependent variables. To this end, we expand
dependent variables w(x, y, Z, t) := (θ ′, φ, ψ)T as

w =

Ny/2−1∑
j=0

Nx/2−1∑
i=0

[
w̃

c
ij (Z, t) cos(kx,ix + ky,j y) + w̃

s
ij (Z, t) sin(kx,ix + ky,j y)

]
, (A 1)

where kx,i = iπ/Lx , ky,j = jπ/Ly are the associated discrete wavenumbers, and w̃
c
, w̃

s

are the Fourier coefficients. We may readily transform quantities from physical space
to spectral, space with a DFT, which we denote w̃ = F (w). Substitution of (A 1) into
the governing equations, multiplication by [cos(kx,mx +ky,ny)+sin(kx,mx +ky,ny)], and
integration over [0, Lx] in x and [0, Ly] in y yields a system of Nx × Ny equations in
spectral space, one for each w̃

c
ij and w̃

s
ij . These can be written as

M · ∂tw̃ij + N = L · w̃ij , (A 2)

for w̃ = w̃
c

and w̃ = w̃
s
, where M = diag(Pr, −k2

⊥, −k2
⊥),

L =


−k2

⊥ 0 0

R̃a/P r k4
⊥ −∂Z

0 −∂Zk2
⊥ k4

⊥

 , N(w̃ij ) =

Nθ ′

Nφ

Nψ

 , (A 3)



Rotationally constrained convection 171

k2
⊥ = k2

x,i + k2
y,j . In order to avoid spectral convolution, N is derived in physical space

as N= F{Nphys[F−1(w̃)]}, where F−1 denotes an inverse DFT, and

Nphys(w) =


Pr[J⊥(ψ, θ ′) + ∇2

⊥φ∂Zθ]

J⊥(ψ, ∇2
⊥φ)

J⊥(ψ, ∇2
⊥ψ)

 , (A 4)

where we have suppressed the ij subscripts.

A.2. Temporal discretization

As discussed in § 3, we employ a mixed implicit/explicit Runge–Kutta scheme
developed by Spalart et al. (1991). For our system (A 3), the discrete-time equations
may be written

[L − (βm	tn)
−1M] · w̃n+m/3

ij = −
[
αm

βm

L + (βm	tn)
−1 M

]
· w̃n+(m−1)/3

ij

+
γm

βm

Nn+(m−1)/3 +
ζm

βm

Nn+(m−2)/3, (A 5)

in which three substeps (m = 1, 2, 3) constitute a full time step (	tn). The step size 	tn
is chosen based on the CFL criterion with respect to the maximum horizontal
velocity. For stability, we use 	tn = 0.68	min/u

n
max where 	min is the minimum

grid spacing and un
max is the magnitude of the maximum horizontal velocity at

the end of time step n. For completeness, we give the integration coefficients in
(A 5):

α1 = 29
96

, α2 = − 3
40

, α3 = 1
6
, β1 = 37

160
, β2 = 5

24
, β3 = 1

6
, (A 6a)

γ1 = 8
15

, γ2 = 5
12

, γ3 = 3
4
, ζ1 = 0, ζ2 = − 17

60
, ζ3 = − 5

12
. (A 6b)

We rewrite the system as

θ ′n+m/3 =

(
k2

⊥ +
Pr

βm	tn

)−1 [(
−αm

βm

k2
⊥ +

Pr

βm	tn

)
θ ′n+(m−1)/3

− γm

βm

N
n+(m−1)/3
θ ′ − ζm

βm

N
n+(m−2)/3
θ ′

]
, (A 7a)

∂2
Zφn+m/3 − k2

⊥

(
k2

⊥ +
1

βm	tn

)2

φn+m/3 = k2
⊥

(
k2

⊥ +
1

βm	tn

)
Rφ + ∂ZRψ, (A 7b)

∂2
Zψn+m/3 − k2

⊥

(
k2

⊥ +
1

βm	tn

)2

ψn+m/3 = k2
⊥∂ZRφ + k2

⊥

(
k2

⊥ +
1

βm	tn

)
Rψ, (A 7c)

where

Rφ =
R̃a

P r k2
⊥

θ ′n+m/3 +
αmR̃a

k2
⊥βm P r

θ ′n+(m−1)/3 − αm

k2
⊥βm

∂Zψn+(m−1)/3

+

(
αm

βm

k2
⊥ − 1

βm	tn

)
φn+(m−1)/3 − γm

k2
⊥βm

N
n+(m−1)/3
φ − ζm

k2
⊥βm

N
n+(m−2)/3
φ , (A 8a)
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Rψ = −αm

βm

∂Zφn+(m−1)/3 +

(
αm

βm

k2
⊥ − 1

βm	tn

)
ψn+(m−1)/3

− γm

k2
⊥βm

N
n+(m−1)/3
ψ − ζm

k2
⊥βm

N
n+(m−2)/3
ψ , (A 8b)

and the subscripts ij have again been suppressed.

A.3. Vertical spatial discretization

Finally, we transform Z such that Z ∈ [−1, 1] and discretize in the vertical with NZ

nodes located at the roots of the Chebyshev polynomial: Zk = cos[(k − 1)π/(NZ − 1)].
With this discretization, we expand dependent variables as

w̃
n
ij (Z) =

NZ−1∑
k=0

w̃
n
ijkTk(Z), (A 9)

where Tk is the kth-order Chebyshev polynomial. Substitution of (A 9) into (A 7),
multiplication by Tl(Z) and appropriate weight function (see Gottlieb & Orszag
1977), and integration over [−1, 1] yields a diagonal system for θ ′n+m/3 and tridiagonal
systems for φn+m/3 and ψn+m/3 (after some manipulation) that must be solved at each
time step. To satisfy boundary conditions, we use tau correction (Gottlieb & Orszag
1977), where the highest two modes are sacrificed to satisfy boundary conditions.

For solution, we first solve (A 7ca) for θ ′n+m/3, and apply tau correction to ensure
that θ ′n+m/3 = 0 at upper and lower boundaries. We then solve the remaining two
tridiagonal systems for φn+m/3 and ψn+m/3 subject to boundary conditions (2.30a) and
(2.31a), respectively. All fields are de-aliased with the standard 2/3 rule at each time
substep.
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